The Tight Junction Associated Signalling Proteins ZO-1 and ZONAB Regulate Retinal Pigment Epithelium Homeostasis in Mice
نویسندگان
چکیده
Cell-cell adhesion regulates the development and function of epithelia by providing mechanical support and by guiding cell proliferation and differentiation. The tight junction (TJ) protein zonula occludens (ZO)-1 regulates cell proliferation and gene expression by inhibiting the activity of the Y-box transcription factor ZONAB in cultured epithelial cells. We investigated the role of this TJ-associated signalling pathway in the retinal pigment epithelium (RPE) in vivo by lentivirally-mediated overexpression of ZONAB, and knockdown of its cellular inhibitor ZO-1. Both overexpression of ZONAB or knockdown of ZO-1 resulted in increased RPE proliferation, and induced ultrastructural changes of an epithelial-mesenchymal transition (EMT)-like phenotype. Electron microscopy analysis revealed that transduced RPE monolayers were disorganised with increased pyknosis and monolayer breaks, correlating with increased expression of several EMT markers. Moreover, fluorescein angiography analysis demonstrated that the increased proliferation and EMT-like phenotype induced by overexpression of ZONAB or downregulation of ZO-1 resulted in RPE dysfunction. These findings demonstrate that ZO-1 and ZONAB are critical for differentiation and homeostasis of the RPE monolayer and may be involved in RPE disorders such as proliferative vitroretinopathy and atrophic age-related macular degeneration.
منابع مشابه
The ZO-1–associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density
Epithelial tight junctions regulate paracellular permeability, restrict apical/basolateral intramembrane diffusion of lipids, and have been proposed to participate in the control of epithelial cell proliferation and differentiation. Previously, we have identified ZO-1-associated nucleic acid binding proteins (ZONAB), a Y-box transcription factor whose nuclear localization and transcriptional ac...
متن کاملThe Y-box factor ZONAB/DbpA associates with GEF-H1/Lfc and mediates Rho-stimulated transcription
Epithelial tight junctions recruit different types of signalling proteins that regulate cell proliferation and differentiation. Little is known about how such proteins interact functionally and biochemically with each other. Here, we focus on the Y-box transcription factor ZONAB (zonula occludens 1-associated nucleic-acid-binding protein)/DbpA (DNA-binding protein A) and the Rho GTPase activato...
متن کاملViral vector-mediated RNA interference in the retina
RNA interference (RNAi) is a highly conserved post-transcriptional gene silencing process triggered by double-stranded RNA (dsRNA) in eukaryotic cells. Elucidation of the RNAi regulatory pathway and its components has led to the identification of endogenous dsRNA molecules, termed microRNAs (miRNAs), which are transcribed as a single hairpin molecule prior to their maturation into a cytoplasmic...
متن کاملThe heat-shock protein Apg-2 binds to the tight junction protein ZO-1 and regulates transcriptional activity of ZONAB.
The tight junction adaptor protein ZO-1 regulates intracellular signaling and cell proliferation. Its Src homology 3 (SH3) domain is required for the regulation of proliferation and binds to the Y-box transcription factor ZO-1-associated nucleic acid binding protein (ZONAB). Binding of ZO-1 to ZONAB results in cytoplasmic sequestration and hence inhibition of ZONAB's transcriptional activity. H...
متن کاملBves Modulates Tight Junction Associated Signaling
Blood vessel epicardial substance (Bves) is a transmembrane adhesion protein that regulates tight junction (TJ) formation in a variety of epithelia. The role of TJs within epithelium extends beyond the mechanical properties. They have been shown to play a direct role in regulation of RhoA and ZONAB/DbpA, a y-box transcription factor. We hypothesize that Bves can modulate RhoA activation and ZON...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010